End Field Modelling

J. Scott Berg
Brookhaven National Laboratory
23 January 2004
Ring Cooler/Emittance Exchange Workshop

End Field Model

- Make some assumption on behavior of field at ends
 - Rate and form of falloff
 - Symmetry
- Types of end symmetry
 - Midplane: form of field in midplane is given: $B_y(x, 0, s)$
 - Multipole: in polar coordinates, B_r and B_ϕ in polar coordinates are of the form $f(r,s)\sin[(m+1)\phi]$ (cos for the other)
 - * Specify coefficient of $r^m \sin[(m+1)\phi]$ (cos for the other)
- These assumptions give different answers
 - ◆ Answers are the same if there is no s dependence
 - ◆ Which symmetry to choose depends on magnet construction
 - Could be other symmetries

Example: Quadrupole

• Maintain multipole symmetry:

$$B_{x} = -\sum_{k=0}^{\infty} \frac{1}{2k!(k+2)!} B_{1}^{(2k)}(s) [(2k+1)x^{2}y + y^{3}] \left(-\frac{x^{2}+y^{2}}{4}\right)^{k-1}$$

$$B_{y} = -\sum_{k=0}^{\infty} \frac{1}{2k!(k+2)!} B_{1}^{(2k)}(s) [x^{3} + (2k+1)xy^{2}] \left(-\frac{x^{2}+y^{2}}{4}\right)^{k-1}$$

$$B_{s} = \sum_{k=0}^{\infty} \frac{1}{k!(k+2)!} B_{1}^{(2k+1)}(s) (x^{2}-y^{2}) \left(-\frac{x^{2}+y^{2}}{4}\right)^{k}$$

Midplane expansion

$$B_x = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (-1)^k B_1^{(2k)}(s) y^{2k+1} \qquad B_y = x \sum_{k=0}^{\infty} \frac{1}{(2k)!} (-1)^k B_1^{(2k)}(s) y^{2k}$$

$$B_s = x \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (-1)^k B_1^{(2k+1)}(s) y^{2k+1}$$

Example: Quadrupole: Notes

- Very different behaviors
- Multipole is not linear in midplane
- Midplane expansion has higher multipole components
- Note midplane is always linear in x
 - similar true for higher multipoles, but only in straight coordinate system
- Fields are sum of terms
 - s-dependence of each coefficient is some derivative of a given function
 - Will be true as long as curvatures are constant

Example: Midplane Expansion for Bend

- Given B_y in midplane
- Planar reference curve
- Want sufficient terms to get correct linear behavior
- Vector potentials

$$A_{s0}(x,s) = -\frac{1}{1+hx} \int_0^x (1+h\bar{x}) B_{y0}(\bar{x},s) d\bar{x}$$

$$A_{y1}(x,s) = \frac{1}{(1+hx)^2} \int_0^x (1+h\bar{x}) \partial_s B_{y0}(\bar{x},s) d\bar{x}$$

$$A_{x2}(x,s) = -\frac{2h}{(1+hx)^3} \int_0^x (1+h\bar{x}) \partial_s B_{y0}(\bar{x},s) d\bar{x}$$

$$A_{s2}(x,s) = \partial_x B_{y0}(x,s) + \frac{1}{(1+hx)^3} \int_0^x (1+h\bar{x}) \partial_s^2 B_{y0}(\bar{x},s) d\bar{x}.$$

Hard-Edge End Field Approximation

- This does not mean no end field!
- Attempt to extract maximum information without knowing details of end
- Want to examine multiple designs
- Can't re-design magnets each time you make a lattice change
- Need good starting point to judge nonlinearities
 - ◆ Coming from end fields
 - ◆ Chromatic behavior
 - Dynamic aperture

Lie Algebra in One Slide

• Poisson Bracket [f, g]:

$$[f,g] = \sum_{k} \left(\frac{\partial f}{\partial x_k} \frac{\partial g}{\partial p_k} - \frac{\partial f}{\partial p_k} \frac{\partial g}{\partial x_k} \right)$$

- Lie operator f acting on g: :f:g = [f,g]
- Lie map e^{f} : acts on a function; in particular, acts on coordinate functions
 - Gives evolution of coordinates
 - ◆ Exponential form makes it exactly symplectic
 - \bullet Satisfies Hamilton's equations for Hamiltonian H:

$$\frac{d}{ds}e^{:f:} = -e^{:f:}:H:$$

Tracking Through Magnet Ends

- Compute result to first order in body field strength
 - ◆ Can be computed independent of end shape
 - Arbitrary order in transverse variables
 - Limit as end length goes to zero
 - ◆ Can't do better than this without knowing end field shape
- Hamiltonian $H_p H_q$
 - H_p independent of field
 - H_q linear in field
 - ◆ Other terms ignored in this approximation

Tracking Through Magnet Ends (cont.)

• Write map as $e^{f_p(s)}:e^{f_q(s)}:$, f_p independent of field, f_q linear in field

$$\frac{d}{ds}e^{:f_p(s):} = -e^{:f_p(s):}:H_p:$$

- $e^{f:p(s)}$: will become the identity map as end length $\to 0$.
- Still needed as part of derivation
- Now have differential equation for f_q (need to know fancy Lie algebra stuff for this)

$$iex(-:f_q:)\frac{df_q}{ds} = H_q + (e^{-:f_q:} - 1)H_p$$
 $iex(x) = \frac{e^x - 1}{x}$

• Write f_q as a sum of terms, and get recursion relation (ignore nonliner in f_q)

$$f_q(s) = \sum_{k=1}^{s} f_k(s)$$

$$f_1(s) = \int^s H_q(\bar{s}) d\bar{s}$$

$$f_{n+1}(s) = \int^s [H_p, f_n(\bar{s})] d\bar{s}$$

Tracking Through Magnet Ends (cont.)

• If $S_L(s)$ is a function going from 0 to 1 in length $L, L \to 0$,

$$\int_{-L/2}^{L/2} ds_1 \int_{-L/2}^{s_1} ds_2 \cdots \int_{-L/2}^{s_{n-1}} ds_n \, \mathcal{S}_L^{(k)}(s_n) = \delta_{kn}$$

• Accelerator Hamiltonian with curvatures h_x and h_y :

$$[H_p, f] = -\left[h_x p_s \frac{\partial f}{\partial p_x} + h_y p_s \frac{\partial f}{\partial p_y} + (1 + h_x x + h_y y) \left(\frac{p_x}{p_s} \frac{\partial f}{\partial x} + \frac{p_y}{p_s} \frac{\partial f}{\partial y}\right)\right]$$

- \bullet Thus f_k picks off terms proportional to the kth derivative of the field at the end
 - ◆ Assumes reference curve curvatures are constant
- Result is that f_{n+1} has larger transverse order than f_n : convergence, in some sense
- Evaluation: only need to get correct to first order:

$$z_{\text{new}} = z_{\text{old}} + J \nabla f((z_{\text{old}} + z_{\text{new}})/2), J \text{ is symplectic metric}$$

- Method is symplectic, but implicit: probably nothing better for symplectic
- Can do Euler step if don't need symplecticity

Example: Bend

- Use midplane expansion from above
- Get linear effects correct

$$f = \frac{qy^2p_x}{2p_s}\Delta B_{y0}(x)$$

• If only looking to get tunes right:

$$\Delta p_y = -\frac{qyp_x}{p_s} \Delta B_{y0}(x)$$

- We could track with this, and would already see nonlinear behavior
 - Should probably include at least one higher order to get some pure y nonlinearity
- This is the classical result, but we have more
 - ◆ This works for arbitrary midplane field profile, everywhere in midplane, and gets linear behavior correct
 - We know how to treat the corresponding nonlinearities
 - We can expand to higher order

Conclusions

- When doing a field expansion, it is important to choose the correct symmetry
 - ◆ Symmetry corresponds to magnet construction
- Can get results from effects of magnet ends without knowing much about magnet ends
 - ◆ Still need to know general symmetry
 - ◆ Can get higher order nonlinearities: dynamic aperture